linear-algebra Definition Diagonalisable Matrix A square matrix A∈Fn×n is called diagonalisable if: A=T⋅diag(λ1,λ2,…,λn)⋅T−1 where T=(x1,x2,…,xn) x1,x2,…,xn are linearly independent vectors λ1,λ2,…,λn∈F are eigenvalues