linear-algebra

Definition

Eigenvector

An eigenvector of a linear mapping is a non-zero vector that, when transformed by , is scaled by a scalar factor (the eigenvalue). Formally:

Geometrically, an eigenvector points in a direction that remains invariant under the linear transformation, with its magnitude being adjusted by .

Example

To find the eigenvectors of an eigenvalue for a matrix , solve the homogeneous linear system:

For a matrix with :

;
The solution space (the eigenspace) consists of all vectors that satisfy this equality.