Definition
Subgroup
A group is a subgroup of group , denoted as , if the following axioms are fulfilled:
- Non-Empty Subset:
- Associativity:
- Closure:
- Neutral Element:
- Inverse Element:
Example:
- (not inversible)
Subgroup Criteria
Subgroup Criteria
\begin{align} U \leq G &\Longleftrightarrow \begin{cases} 1. & U \neq \emptyset \\ 2. & \forall x, y \in U: x \circ y \in U \\ 3. & \forall x \in U: x^{-1} \in U
\end{cases} \ \
&\Longleftrightarrow \begin{cases}
- & U \neq \emptyset \
- & \forall x, y \in U: x \circ y^{-1} \in U \end{cases} \end{align}