algebra

Definition

Subgroup

A group is a subgroup of group , denoted as , if the following axioms are fulfilled:

  1. Non-Empty Subset:
  2. Associativity:
  3. Closure:
  4. Neutral Element:
  5. Inverse Element:

Example:

  • (not inversible)

Subgroup Criteria

Subgroup Criteria

\begin{align} U \leq G &\Longleftrightarrow \begin{cases} 1. & U \neq \emptyset \\ 2. & \forall x, y \in U: x \circ y \in U \\ 3. & \forall x \in U: x^{-1} \in U

\end{cases} \ \

&\Longleftrightarrow \begin{cases}

  1. & U \neq \emptyset \
  2. & \forall x, y \in U: x \circ y^{-1} \in U \end{cases} \end{align}